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1 INTRODUCTION

This document describes the work performed under the contract
titled "Singer AI Project: Ki.owledge-Based Vision Algorithm
Development:* It is intended to fulfill the requirements of the
final technical report.

1.1 Executive Summary

This project was initiated to investigate possible application of
Artificial Intelligence (AI)'concepts to the process of developing
image processing algorithms for Automatic Target Recognition (ATR)1.
Towards this end, a prototype expert system image algorithmist
decision aid was designed and implemented. All of the project
goals were either met or exceeded. Additional funding is need to
fully implement the system defined in this project and integrate it
into ERIM's Cyto HSS.

1.2 Motivation

ine motivation for this project was based on three major factors.
First, the development of machine vision algorithms is the current
bottleneck in the integration of vision technologies into
application areas. Second, the process of developing such
algorithms is currently viewed as an art practiced by only a
handful of well-seasoned machine vision experts. Third, and last,
Artificial Intelligence techniques have,been successfully applied
in similar situations in other areas. -' "--- ' -

The process of developing image algorithms is seen as the
bottleneck in producing automated computer vision systems. Current
approaches are very labor intensive. Routine algorithm development
can take several months of dedicated work by highly skilled
experts. Thus, the process is both slow and costly. Since such
experts are also rare and take up to ten years to develop, the
problem is further constrained by the number of current experts.

The process of developing image algorithms is currently viewed
as an art. Figure 1-1 (a) depicts this situation. The figure
shows that the expert develops the algorithm that takes the input
image(s) as input and produces the interpreted image as output, but
it does not provide any details as to how that happens.
Unfortunately, this captures much of the current understanding of
the process.
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AM'I
Recent technological developments in applied Artificial

Intelligence (expert systems) have successfully provided solutions
to problems that have been previously viewed as too complicated.
Characteristic of these problems are situations in which things
break, information is missing, assumptions fail, and/or
mathematical intractability exists. Problems with such
characteristics cannot be solved through pat solutions or
mathematical models. Instead, expert systems employ heuristic
techniques patterned after human reasoning strategies to solve
these problems. These techniques have been used to produce systems
that perform at expert level in areas such as medical diagnosis,
computer configuration, and mineral exploration.

1.3 Project Goals

The project was initiated to address two goals. The first, more
near-term goal, was for Singer and ERIM to cooperatively increase
their understanding of Artificial Intelligence applications to
computer vision. The second, more long-term goal, was to achieve
means for much more quickly and economically adapting ATR systems
to new target types, scenarios, and other conditions.

The near-term goals was designed to initiate new ideas and
solutions to the problem of developing image processing algorithms.
Since both Singer and ERIM have common interest in developing new
solutions in this area and since applications of AI ideas to this
area are relatively unexplored, it was decided that a combined
effort involving both users and researchers was both necessary and
worthwhile.

The long-term goal of developing more economical ways to
produce ATR image algorithms was viewed as both technologically
feasible and essential. Advances in Artificial Intelligence had
made progress in this area possible. Integrating this technology
into an environment for ATR algorithm development was the
challenge. Figure 1-1 (b) illu-trates how this was to be
accomplished. This figure shows an expert system supporting the
development process. Within this expert system is know edge about
how to develop ATR algorithms. This knowledge has been obtained
from experts with several years of experience in developing ATR
algorithms. The expert system, as illustrated in the figure, makes
this knowledge available for the novice user to draw upon, and
thus, enables him to developed more sophisticated more robust
algorithms. Figure 1-1 (c) illustrates advanced stages of the
development of the expert system. It shows an ideal situation
where the algorithmist has been fully replaced by an even smarter
expert system, and the time required for algorithm development has
become a minor factor. Thus, figures 1-1 (a)-(c) show a planned

3
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sequence of ATR algorithm development support by Artificial
Intelligence, from no support to ultimate support. The benefits of
following such a plan are numerous and are outlined in table 1-1.

1.4 Project Outcomes

Several very important steps towards ultimate, AI-supported, ATR
algorithm development were taken in this project. Table 1-2
summarizes these steps. As shown in the table, this project has
resulted in a much increased understanding of the ATR algorithm
development process, a vocabulary in which to discuss algorithm
concepts, and a collection of global strategies currently used to
develop ATR algorithms. In turn, the resulting knowledge lead to
the design of an AI-based decision aid for augmenting the algorithm
development process. This design provides the detailed
specifications for the system outlined in figure 1-1 (b). Two
major system components from this design were fully implemented
under this project, a knowledge acquisition environment and a
inference engine. These components were then used to construct a
prototype implementation of the system outlined in figure 1-1 (b).

1.5 Future Directions

Although this project was very successful, there is much work that
remains before a fully developed image algorithmist aid is ready
for production use. The direction for this work, however, is very
clear. Continued knowledge base development is required to
implement the remaining phases of the edge extraction algorithm
sequence outlined above. The resulting expert system must then be
integrated into an AI workstation coupled with ERIM's Cyto HSS.

2 PROJECT PHASES

This project can be broken down into four sequential phases: the
problem analysis phase, the system definition phase, the tool
development phase, and the knowledge base development phase. In
the problem analysis phase, a study was undertaken to explore the
essence of image algorithm development. F-om this phase the
project transitioned into a system definition phase in which
specifications for a image algorithmist decision aid were
developed. These specifications were then followed in the third
project phase, the tool development phase. In this phase an
inference engine and a visual inference network editor were
developed. These tools were then used in phase four to construct a
prototype expert system. An overview of the entire project in
presented in figure 2-1.

6



* Broader Availability

" Shorter Development Cycle

* More Robust ATR Decision Algorithms

" Quicker Adaption To New Tactics, Threats,

Environments, Countermeasures, etc...

* Greater Ease-of-Use In Incorporating

Pre-brief Data Into ATR

Benefits Achievable From Employing

Expert System Technology in ATR's

Table 1-1
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* Increased Understanding of Image

Algorithm Development

* Vocabulary of Image Processing Terms

* Global Strategies

* System Design

* Knowledge Acquistion Environment

* Inference Engine

* Prototype Expert System

Project Outcomes

Table 1-2
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Months

After Receipt of Contract

1 2 3 4 5 6 1 8 1 1

Problem Analysis Phase

1) Project
Initiation

2) Problem
Selection

3) Initial Knowledge
Engineering Sessions

4) interim
Report

System Design Phase

1) System
Specification

Tool Development Phase

1) VISED-

Development

2) ARC

Development

Prototype Expert System Phase

1) Knowledge
Base Development

2) Prototype
Demonstration

3) Final Report

Project Overview

Figure 2-1
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3 SOFTWARE SYSTEMS

This section describes the system software developed under the
project. This software is organized into three major modules: the
knowledge acquisition environment, the inference engine, and the
knowledge base. Together these modules form an environment for
expert system development.

The relationship between the system modules is outlined in
figure 3-1. As depicted in the figure, the knowledge acquisition
environment is used by the expert analyst to develop and modify the
image processing knowledge base. The knowledge base is then read
by the inference engine as it develops solutions to image
processing problems. If errors are uncovered during the process,
the expert reenters the knowledge acquisition environment to debug
and fine-tune the knowledge base. Thus, the system defines an
environment for interactive knowledge base development.

The relationship between the software developed under this
project and a complete expert system are described in the overview
of figure 3-2. This figure shows three levels of interaction:
interactive knowledge base development, primitive procedure
development, and knowledge-based algorithm development. The system
constructed under this project creates an environment to support
the first type of interaction, namely interactive knowledge base
development. However, this is just one aspect of long-term
development and use of an expert system. All three interaction
levels are required, and figure 3-3 describes how these levels
interact over the lifetime of the system. From this figure, it is
easy to see that this complete system design supports continued
development and maintenance within the familiar rapid-prototype and
iterative refinement AI implementation methodology. The software
developed under this project has been implemented with this overall
scheme in mind and provides the necessary hooks for future
development.

The software developed under this project was implemented on
ERIM's Symbolics 3670. It is written entirely in ZetaLisp and
Flavors, and takes advantage of many of the features incorporated
into the Symbolics environment. In particular, this software
relies heavily on the object-oriented style of lisp programming of
the flavor system. It also makes considerable use of the Symbolics
graphics and user interface components.

The remainder of this section is directed at explaining the
system modules in detail.

10



.R.IM

Expert

Analyst

Interaction

Knowledge

Acquistion

Enviroment

(VISED)

Develop/Modify

Image

Processing Debug/Fine-tune

Knowledge

Base

Read

Inference

Engine

(ARC)

Interactive Knowledge Base Development

Figure 3-1

11



m E
E E

0) -D '5 wz0a

WLU E~ 0 L

(D c

LU 0> C_
-Z w

CL a

(D =

a) -aE-

00

12Q



V8-R I MD

EXPERTRSYSTE
DEVRLPM3NANAL YENANC

Nlr N-3

[74; AR



_ERIM

3.1 The Knowledge Acquisition Environment

The VisEd knowledge acquisition environment was developed in part
under this project. It facilitates rapid development and
management of large knowledge base structures. Using the VisEd
tool, users can construct and modify knowledge structures with
simple mouse and keyboard movements. The resulting knowledge
structures can then be evaluated from within the editor, thus
enabling rapid, iterative knowledge base development.

The VisEd system was constructed to eliminate much of the
wasted effort normally involved in building network structures with
natural language oriented representations. These network
structures are very common in expert systems, and can be thought of
as a collection of nodes. A typical inference network node for
knowledge-based image algorithm development would normally be
represented in a form similar to the following,

(goal close-filter
text "Use closing as a filter."
anounce "Considering the use of closing as a filter."
prior 0.0
antecedents (OR d-small-lines d-small-noise)
context-of (close-conditions 5 100)
action (execute-the-close-filter-operation))

In any reasonably sized knowledge-based system the relationships
between network nodes is not readily apparent from this syntactic
representation. In actual practice, knowledge engineers often draw
pictures (e.g. figure 3-4) of the relationships between nodes to
fully understand inference network semantics. This practice is
both awkward and time consuming. Furthermore, it is not something
that can be routinely expected of domain experts when interacting
with a knowledge acquisition environment.

The VisEd system enables the user to develop knowledge bases
in the more understandable visual form. With this system, the user
simply uses the mouse to paint network structures like those of
figure 3-5 onto the screen. Once the network structure has been
painted, the mouse is used to "open" nodes and links. An example
of an "opened" node is shown in figure 3-6. As shown in the figure
the "opened" objects display menu forms of object parameters (e.g.
text, prior probabilities, etc.) which can then be easily
initialized or updated. Error checking has been built into the
system and is continuously performed to assure that the semantic
integrity of the network is maintained. Prompts are given on the
screen to assist the user in selecting the proper values for all
parameters.

14
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VisEd uses multiple pages with indexing and windowing to
further reduce the overall complexity of the system. This enables
the user to develop a knowledge base in book like form. Network
structures are painted on pages. Individual nodes may occur on
more than one page. Any modifications to these multiply
represented nodes are reflected in all occurances. Movement around
the network is mouse controlled and includes simple page turning,
individual page scrolling, and page lookup through a mouse
sensitive page name index.

VisEd can automatically produce a knowledge base in a variety
of different syntactic forms for input into inference engines.
Since knowledge about these syntactic representations is
incorporated into VisEd, this removes the burden of dealing with
these forms from the user. Thus, the user is not required to deal
with lisp structures, parenthesis counting, syntactic editors, etc.
Currently, VisEd supports three different forms: an internal
binary form, a Lisp form, and a Vax form. Additional forms can be
easily incorporated into the system to facilitate use with other
expert system shells.

VisEd also features very flexible and extensible capabilities.
Domain specific primitives can be added to a library of primitives
to enable use of this approach to acquiring knowledge across a very
broad field of complex domains. This enables the development and
maintenance of intelligent systems in areas that require a mixture
of both conventional and Artificial Intelligence approaches. This
layered approach partitions the development modes of the system in
such a way that domain experts with no previous computer experience
can build and maintain knowledge structures.

The VisEd system is not limited to use on this project and can
be used to create expert systems in a wide range of problem
domains. It has proved to be an extremely valuable tool for
knowledge development and maintenance. It has proved to be an
especially valuable tool for refining and maintaining expert system
knowledge bases.

3.2 The Inference Engine

The Automated Reasoning Component (ARC) has been developed by ERIM
in part for use in this project. This inference engine is much
like the one found in the classic expert system, PROSPECTOR. It is
a goal-directed system with both fuzzy logic and Bayesian
uncertainty mechanisms.

18
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With ARC, as in PROSPECTOR, rules are used to form an
inference network structure. This structure contains top-level
hypotheses, called goal hypotheses, which are decomposed into
various levels of subhypotheses. The subhypotheses are further
broken down into lower level subhypotheses until eventually they
become specific items of evidence. With each node, there is an
associated prior degree of belief and a rule for combining subnode
degree of belief into an updated degree of belief for the node.

During a consultation session, ARC attempts to evaluate the
degree of belief of a goal hypothesis by chaining down the
inference net, identifying the evidence items that affect the goal
hypothesis, and querying the user or a database for each relevant
item of evidence. Evidential degrees of belief are then propagated
through the inference network to determine whether or not a goal is
accepted.

3.2.1 Inference Network

Knowledge is represented in the ARC system in the form of an
inference network. This is a directed graph comprised of nodes and
links. The nodes in the network represent individual antecedent
conditions, consequent conditions, or context conditions. The
links represent either logical or contextual relationships between
nodes.

Three different node types may be contained in the network
structure: goal, hypothesis, and evidence. The goal nodes are
generally the root vertices of the network, but not necessarily.
They represent the propositions that the system is attempting to
conclude. The hypothesis nodes are intermediate vertices in the
network structure. Generally they are intermediate propositions
that the system must resolve in order to infer something meaningful
about the system goals. These nodes are typically identified as
those nodes that are neither goal nodes or evidence nodes.
Evidence nodes are simple propositions whose status can be
determined by either querying the user, an external database, or a
sensor. Generally these nodes are the leaves of the network (i.e.
nodes with no links from any nodes representing antecedents.)
Associated with each node are individual node attributes. These
attributes bind various additional information to the nodes.

Two general classes of link types may be contained in the
network structure: logical and context. The logical links connect
antecedent conditions with their consequents. Within the class of
logical links there are four different instances: AND, OR, NOT,
and BAYESIAN. These different instances determine the way degrees
of belief are combined and assigned to higher level nodes within

19
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the network structure. The context links indicate that one
proposition establishes the context within which the other is
explored. Certain logical and context links are also associated
with individual link attributes. The context links have associated
lower bound (LB) and upper bound (UB) attributes that establish a
range under which context belief requirements are satisfied. The
Bayesian links have positive (PW) and negative (NW) weights that
establish the maximum effect that the antecedent evidence can have
on the consequent node.

Figure 3-4 provides an example of an ARC inference network
structure. In this example the the close-filter node is a goal,
the close-cond and d-small-nois nodes are subhypotheses, and the
remaining nodes are evidence nodes. In this figure the dark lines
represent logical relationships between nodes and the dashed lines
represent contextual relationships.

3.2.2 Uncertainty Mechanism

Each node in the inference network has a prior and current degree
of belief associated with it. The degree of belief ranges from
-100.0 (false) to +100.0 (true), where 0 represents uncertainty.
Initially, the current degree of belief for a particular node is
the same as its prior degree of belief.

Degrees of belief are equivalent to probabilities. The
relationship between the two is defined as

Deg = 10 * log1O (p/(l-p)).

Thus, degrees of belief are just ten times the log base ten of the
odds function. This degree of belief scale is arbitrary, but
psychological arguments can be made for its use.

The uncertainty mechanism for the system is a combination of
fuzzy logic and Bayesian reasoning. The combination formulas of
the AND, OR, and NOT rules are based on ideas from fuzzy logic.
The combination formula for the Bayesian rule is based on Bayes
rule with independence assumptions.

The rules for combining evidence within this structure are
defined in figures 3-7 through 3-10. Thus, for an AND rule the
degree of belief associated with the consequent is the minimum of
the degrees of belief of the antecedents. For the OR rule the
degree of belief is the maximum of the degrees of belief of the
antecedents For the NOT rule, the degree of belief is the
negative of the belief of the ant.ecedent. For the Bayesian rule,
the degree of belief of the antecedent is the current belief plus

20
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IF El AND E2 AND EN THEN H

BELIEF (H) = Min{ BELIEF (Ei)}

1 <= i <= N

Degree of Belief Propagation For AND Rules

Figure 3-7
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IF El OR E2 OR .EN THEN H

BELIEF (H) = Max {BELIEF (Ei)}

1. <= i <= N

Degree of Belief Propagation For OR Rules

Figure 3-8
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IF NOT E THEN H

H

NOT

E

BELIEF (H) = -BELIEF (E)

Degrees of Belief Propagation for NOT Rules

Figure 3-9
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IF BAYESIAN (El, E2, , EN) THEN H

H

Bayesian

(NW21 PW2 )

El EE23

BELIEF (H) = PRIOR (H) WEIGHT (Ei), where

1 <= i <= N

Sign(PW) * mi; PW Belief(Ei) - PriozBelief(Ei) > Prior(Ei)

WEIGHT(Ei) : 0 Belief(Ei) > Prior(Ei)

Sign(NW) * min NWI, Belief(Ri) Prior(Belief(Ei) > Prior(Ei)

Degree Of Belief Propagation for Bayesian Rules

Figure 3-10
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the sum of the evidence weightings determined by linear
interpolation between the positive and negative weights.

Using these combination rules, belief is propagated through
the network structures. Evidence is incorporated into the system
through the evidence nodes. This evidence is represented in the
form of degrees of belief. It is usually obtained through dialog
with the user or through querying some existing data base. The
evidential degrees of belief are then propagated through the
network structure to update the degrees of belief associated with
consequent hypotheses. The updating rules outlined above are used
to determine the new degrees of belief for these consequent
hypotheses.

Evidence is introduced into the system in the form of
certainty factors. These factors are real numbers that range from
-5.0 (absolutely false) to +5.0 (absolutely true) with 0.0
corresponding to uncertainty. Thus, values from -5.0 to 0.0
indicate some certainty that the assertion is false and values from
0.0 to +5.0 indicate some certainty that the assertion is true.
These certainty factors are convertered into degrees of belief
through piecewise linear interpolation. The interpolation formulas
are illustrated in figure 3-11. From this figure it is easy to see
that if the user inputs a certainty factor between -5.0 and 0.0,
then the computed degree of belief will be between -100.0 and the
prior degree of belief. Similarly, if the user inputs a certainty
factor between 0.0 and +5.0, then the computed degree of belief
will be between the prior degree of belief and +100.0. It is
worthwhile to note that under this scheme a certainty factor of
zero is converted into the prior degree of belief. Thus, if a user
enters a zero (no knowledge), the belief defaults to the prior
degree of belief.

3.2.3 Inference Mechanism

The ARC system reasons by propagating degrees of belief through the
inference network structures created by V*sEd. ARC begins this
process by selecting the largest, currently uninvestigated, goal
from the set of inference network goal nodes. Once it has a goal
to consider, ARC will select and examine evidence for that goal
until there is no more evidence to consider.

Evidence is selected by recursively examining the inference
net links to the goal node until evidence nodes are found which,
when evaluated, may have some effect on the degree of belief of the
current goal. The evidence selection mechanism considers all yet
to be evaluated evidence for the goal, and selects the piece of
evidence that could cause the largest local shift in the degree of

25
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Belief

100

Certainty
I I. ,r Factor

-100

( (Prior(Z) + 100) (Certainty(l) + 5)j -100 Certainty(E) < 0

Belief (E) = Prior (Z) Certainty(E) = 0

(Prior (Z) - 100) (Certainty (E) + 10CranyE

Certainty Factor to Belief Conversion

Figure 3-11
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belief associated with the goal. Thus, for AND nodes, the smallest
uninvestigated antecedent of the current node is selected for
consideration. For OR nodes, the largest uninvestigated antecedent
of the current node is selected. For NOT nodes the investigated
antecedent is selected. For the Bayesian nodes the uninvestigated
antecedent with the largest absolute PW or NW weight is selected.

Context links effect the evidence selection process. Context
links take precedence over logical links, and thus, evidence nodes
that are associated with the goal node through context links are
explored first. Once the portion of the inference network below an
antecedent node of a context link has been fully explored it is
labeled investigated and given a final degree of belief. This
belief is then compared with the [LB,UB] interval of the context
link to determine if the context has been satisfied. If the final
belief fails to fall within the interval, then the consequent
context node is labeled fully investigated and warrants no further
exploration. If the final belief falls within the interval the
context is established, and the portion of the network below the
consequent context node is opened for exploration. Evidence below
this node is then selected in the usual manner.

Once an evidence node is selected for exploration, it is
triggered. If it has a primitive function located in its action
slot, then that function is attached and evaluated. If not, then
the sentence in the text slot is used to create a user prompt. In
either case, the response is a certainty factor which is
immediately converted into a degree of belief. This belief is then
recursively propagated upward through the network, thus updating
the belief associated with all hypotheses effected by this new
evidence.

The process of selecting, triggering, and propagating is
continued until the goal becomes investigated. This can happen in
several ways. If all the antecedent nodes of a goal are explored,
then a final degree of belief can be associated with the goal, and
hence, it is fully investigated. If the network reaches a state in
which an exploration threshold is exceeded and indicates that no
significant impact can be made even if the remaining uninvestigated
evidence nodes are explored, then further analysis of the goal
becomes uninteresting, and thus, the goal is labeled investigated.
If critical context requirements are not met, then the goal is
viewed as not worth exploring and is labeled investigated. Various
combinations can also occur, but all result in a final degree of
belief for the goal node.

Once the goal has been labeled investigated, it is analyzed to
determine whether it has been accepted or not. This is determined
by simply comparing its final degree of belief with a belief

27



threshold. If the goal is accepted, the user is queried to
determine whether the action associated with the goal should be
triggered. If the answer is no, then ARC continues processing
goals. If the answer is yes, then the procedure located in the
goal action slot is attached and evaluated. Since this action is
effectively a conventional procedure call, this facility can
potentially trigger a wide range of outcomes. After the attached
procedure is completed, ARC prompts the user to determine if
continued reasoning is required. If so, ARC continues processing
goals.

ARC continues selecting and processing the largest
uninvestigated goal until one of two situations occur. Either a
satisfactory goal is obtained and the user indicates that further
exploration is unnecessary, or ARC runs out of goals to process.

To clarify the ARC inferencing mechanism, consider the small
hypothetical example illustrated in figure 3-12. As illustrated in
the figure the example network is composed of six nodes. Node G1
is the goal. Node HI is a hypothesis node. Nodes El, E2, and E3
are evidence nodes. Node C1 is an evidence node that establishes
context for G1. If either HI OR E3 are true then the goal, G1, is
true. If both El AND E2 are true, then H1 is true.

The following dialog traces the reasoning that ARC performs to
combine information according to the example network structure.

(01) New goal selected is Gi

(02) Chaining on G1

(03) Chaining on C1

(04) New evidence selected is C1

(05) Enter belief for Cl : 4

(06) Updating current belief of Cl from 0 to 9.542424

(07) Marking C1 investigated.

(08) Chaining on G1

(09) Chaining on H1

(10) Chaining on El

(11) New evidence selected is El

28
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Uncertainty Propagation Example

Figure 3-12

29



SEYRIM

(12) Enter evidence for El : 4

(13) Updating current belief of El from 0 to 9.542424

(14) Updating current belief of H1 from 10 to 5

(15) Updating current belief of G1 from 0 to 5

(16) Marking El investigated.

(17) Chaining on 01

(18) Chaining on H1

(19) Chaining on E2

(20) New evidence selected is E2

(21) Enter evidence for E2 : -3

(22) Updating current belief of E2 from 5 to -3.5994349

(23) Updating current belief of H1 from 5 to -3.5994349

(24) Updating current belief of GI from 5 to 0

(25) Marking E2 investigated.

(26) Marking H1 investigated.

(27) Chaining on G1

(28) Chaining on E3

(29) New evidence selected is E3

(30) Enter evidence for E3 : 3

(31) Updating current belief of E3 from 0 to 6.0206003

(32) Updating current belief of G1 from 0 to 6.0206003

(33) Marking E3 investigated.

(34) The G1 does not look promising

(35) Marking G1 investigated.

(36) No goals left to process.
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(37) Reasoning completed!

The reasoning on this example structure begins with ARC selecting
G1 for consideration (01). ARC the searches for evidence to
consider for GI (02)-(03). C1 is selected first, becuase it is
required to establish the required context for G1 exploration (04).
Evidence for C1 is obtained (05). It is converted into degree of
belief and updates the current belief associated with C1 (06). C1
is marked as being fully explored (07). Since the new belief, for
C1 falls within the [LB,UB] bounds, the context for G1 exploration
is satisfied. ARC continues to search for evidence to support G1
(08)-(10). El is selected as the next best evidence to explore
(11). Evidence is obtained (12) and used to update the degree of
belief for El (13). This evidence is then propagated through the
network (14)-(15). The degree of belief for H1 is changed (14)
from its prior belief, 10, to the minimum belief currently
associated with El, 9.54, and the prior belief of E2, 5. The
belief of G1 is changed (15) from its prior belief to the maximum
of the current belief of Hi and the prior belief of E3, 0. El is
now considered fully investigated (16). ARC continues to search
for more evidence to consider (17)-(19). It selects E2 (20). It
obtains new evidence (21) and converts it to the degree of belief
for E2 (22). This new evidence is propagated through the network
(23)-(24), an4 E2 is marked as being fully explored (25). Since
there is no re,,.jining evidence below H1, it too is marked as being
fully explored (26). ARC continues to search for evidence
(27)-(28). It selects E3 (29), obtains new evidence (30), and
converts this new evidence to degrees of belief (31). It
propagates this evidence (32). E3 is now fully explored (33). Now
G1 is fully explored, but does not have enough support to be
considered as satisfied. The user is informed (34), and the goal
is marked as being fully explored (35). ARC continues to search
for goals to consider. There are none left to explore (36). ARC
is finished with this example (37).

3.3 Knowledge Bases

A filter knowledge base was developed under the fourth phase of the
project. This knowledge base is directtd at providing the
information required to satisfy the first phase, background/noise
removal, of the edge extraction algorithm sequence as outlined
below in the system design section. Thus, this work can be viewed
as the first step in constructing the knowledge structures required
for the image algorithmist aid for edge extraction as defined under
this project.
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The filter knowledge base currently contains information about
seven C3PL filters: the OPEN-FILTER, CLOSE-FILTER, DONUT-FILTER,
HOLE-FILTER, SPIKE-FILTER, BUMP-FILTER, and POTHOLE-FILTER. The
knowledge contained within this data structure is far from
complete. It is, however, fairly representative of the knowledge
required to support this phase of the overall edge extraction
sequence. It is also remarkably robust, especially considering the
small amount of effort that was allocated to this subtask under the
project.

Additional knowledge base development is expected under
subsequent program phases. This development is expected to proceed
in a planned, programmatic fashion as outlined in the system design
section. It is also expected that some experimentation will be
required to fully determine the image conditions under which
infrequently used operations best perform.

4 DISCUSSION OF RESULTS

Several positive outcomes have resulted from the research conducted
under this effort. These outcomes include a much deeper
understanding of the image algorithm development process, an
evolving image processing vocabulary, a collection of global
algorithm strategies, an overall system design for an image
algorithmist aid for edge extraction, an implemented knowledge
acquisition environment, an implemented inference engine, and a
working prototype expert system.

The remainder of this section is directed at describing these
outcomes in detail.

4.1 Understanding Of Image Algorithm Development

This project has resulted in a greater understanding of the proce.-s
of image algorithm development. At the onset, it was generally
conceded that algorithm development was a complex task. It was
realized that such development is a highly experimental process as
characterized in figure 4-1. This view has not changed. What has
changed, however, is that now much more is known about the
complexities associated with this task. In light of this new
understanding, the remainder of this section is spent in discussing
some of the major issues associated with developing image
algorithmist expert systems.

Large amounts of quantative information are required to
develop image algorithms. Much of the time spent in the initial
knowledge engineering sessions was focused on counting pixels.
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Edge widths, noise diameters, spacing sizes, etc. are all
important facts that are used not only in selecting command
parameters but also in selecting the commands themselves.

Numerous global strategies for algorithm development exist.
Some of these strategies are straight forward. Some of them are
tricky and clever. Not all algorithmists have the same set of
strategies to choose from. They are usually exchanged through word
of mouth or through technical papers. No apparent work has been
done to collect these strategies for instructional purposes.

Multiple solutions to image problems are common. For example,
consider the following prototypical problem

ABSTRACT EXAMPLE PROBLEM

ACCEPT Set REJECT Set

Pulse Lines Pulse Lines
Broken Broken
Straight Curved
X-Y Oriented

Figure 4-2 represents a typical image for this problem. The task
is to filter out the curved lines. Several potential solutions to
the problem exist. As an example of this, consider the following
four solutions.

Strategy 1: Join up ALL lines, with preference for X-Y directions,
then find the straight ones of sufficient size.

Algorithm:
Union of closings in X/Y directions, followed by union
of openings in X/Y directions, both with straight
seg-ent structuring elements.

Parameters:
Choose length of closing segments as Maximum of largest X/Y
Gaps which need to be covered. Length of opening segment
should be larger than maximum of closed "reject" segments,
and smaller than minimum of closed "accept" segments.

Caveats:
-Closings may join up other parts of image, particularly
middle regions of lines which are too close together.
-Ranges of gap lengths and edge lengths may make it
not possible to do a complete separation this way.
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Strategy 2: Find only the Ends of lines (especially only the ends
of horizontal or vertical segments), join these up,
add to original image, then select straight X/Y segments.

Algorithm:
Union of Openings by X/Y segments to select H/V lines (=I1)
Find end points of I1 segments (=12) (Match operation)
Union of Closings of 12 by straight H/V segments. (=13)
14 = I1 Union 13
Union of Openings of 14 by straight H/V segments (Done).

Parameters:
Same considerations as above.

Caveats:
-Ranges of accept vs reject gaps and segments after
closing may not be completely disjoint.
-Eight-connectivity problem--how do we handle end

points which are diagonal, or do we ignore?

Strategy 3: After connecting up gaps, find components which are
not H/V, and use span/cdilate to recover their
length and then reject them.

Algorithm:
Join up as before. (=11)
Union of erosions by Non-H/V elements to find zones
which are not H/V.
Conditionally dilate these over I to get those
which contain non-H/V elements.
Subtract result from I1 to get just H/V lines.

Parameters:
Same as above for joining up operation.

Caveats:
Will not work if curved and straight elements cross,
or touch.
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Strategy 4: If curved lines cross straight ones, then find 3 and
4 connection points, and block the conditional
dilation of non-H/V segments at these points, to keep
them from spilling into straight H/V segments. Put them
back in after the lines containing non-H/V zones have
been removed.

Solving even small prototypical problems can be a very
involved process. This is very apparent in the examples above. It
also gives some insight into how difficult it really is to develop
algorithms for complex images.

Experimentation is characteristic of algorithm development.
Most often algorithmists, even expert algorithmists, must resort to
trying various combinations of operations before selecting the
appropriate approach. Since this is an inherent aspect of
algorithm development, any expert system developed in this area
must incorporate this aspect into its system design.

The experimentation aspect of image algorithm development is

often coupled with distinct algorithm phases. Within each of these
phases there is definite experimentation, but between each of the
phases there is little change or modification. This aspect of
algorithm development is examplified by the typical filtering phase
that most often initiates algorithm development. Under this phase
as much unwanted noise is removed as possible. It produces a
filtered image that serves as sort of an anchor point in the
overall algorithm development. It is rarely modified further, and
serves as the fixed input to further algorithm development. This
aspect of algorithm development is important in that it identifies
valuable information for expert system design.

Knowledge of sensor characteristics is important in developing
image algorithms. The sensor that was used to acquire an image has
a definite effect on the characteristics of an image, and an
understanding of this effect must be incorporated into image
algorithms. This is especially true when the algorithm is expected
to work over class of images. For example if a sensor is known to
produce certain noise patterns, then this information should be
incorporated into the filtering phase of algorithm development.

Many aspects of the image algorithm development process are
very much knowledge intensive. Referring back to figure 4-1,

almost every step of the algorithm involves a great deal of
knowledge. In fact, in many of the steps, there exist several
possibilities for developing expert systems to assist in the
process. Understanding the depth of the knowledge involved in the

overall task is extremely valuable and critical to developing the
scope for expert system development in this area.
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The increased understanding of the image algorithm development
process that has resulted from this project is important for
several reasons. First, it provides a great deal of valuable
information about how to train and develop new image algorithmists.
Second, it provides the necessary insight into the problem required
to build intelligent tools to support the algorithm development.
Third, and last, it also provides insight into what conventional
software tools also need to be developed to support the process.

4.2 Vocabulary Of Image Processing Terms

This project has resulted in the beginnings of a vocabulary for
discussing image processing ideas and concepts. From the very
first knowledge engineering session it was apparent that a
vocabulary for discussing image processing concepts was needed. In
fact, the early sessions were characterized by a great deal of
effort spent in defining and explaining terms and ideas. This work
was routinely documented and catalogued to produce working
vocabulary. This vocabulary was then used to produce more
efficient and productive subsequent sessions. Examples of the
vocabulary are shown in figures 4-3 and 4-4.

Again, these results have importance that exceeds this
particular project. Since this vocubulary has produced much more
direct communication of image processing ideas in knowledge
engineering sessions, it can also be used to produce more efficient
knowledge transfers between algorithmists at all levels.

4.3 Global Strategies

This project has resulted in the cataloging of several global
strategies used by image algorithmists when developing algorithms.
The findings from this work is organized into three subsections
below. In the first subsection, strategic issues for separating
desired from undesired edges are explored. In the second
subsection general approaches for developing algorithms on
different classes of lines are presented. In the last and third
subsection, suggested methods for specific edge types are
presented. The compiled information presented in these subsections
is in itself very valuable, especially when viewed as guidelines
for developing and training new algorithmists.
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4.3.1 Strategic Issues In Separating Desired From Undesired Edges

This general strategy has to do with eliminating undesired
information from an image by using some criterion or combination of
criteria to act as a filter. Within this approach there are four
important aspects: determining domain knowledge about the class of
images, distinguishing the accept from the reject set, listing the
criteria and constraints that serve as the basis of this general
strategy, and developing alternative general strategies.

Under this general strategy there are several important
questions that must be asked about a specific class of images for
which the algorithm is being developed. These questions include

the following,

- What is known about the objects of interest? (What stays the

same, what varies?)

- What is known about the context of these objects?

- What is known about the kinds of noise processes which

interfere with the image acquisition process?

- What is known about the sensor, its characteristics, anomalies,
and ways of interacting with the subject?

The "application dependent" information obtained from these
questions represents a priori constraints on the image class
provided to the system by the user based on external knowledge
about the imaging task. (e.g., if orientation is controlled or
lighting is held constant). Additional constraints may be found by
examining a broad range of examples and noting any major
invariances seen.

There are several key aspects associated with distinguishing
the Accept set from the Reject set. These aspects include,

- What stays the same, what varies across the image class, for
desired (accept) vs undesired (reject) edges?

- Need for finding KEY facts to distinguish accept edges from
reject ones. Alternatively, find a criteria subspace which
consistently maximizes the difference between the accept and
reject regions.

- As a general rule, we first try the smaller of the two sets in
number, when looking for distinguishing characteristics.

(Unless it just happens that the more numerous set has
uniformly distinguishing characteristics which would allow it
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to be extracted more easily.)

Look especially for measurement distributions (criteria
dimensions) which completely or partially separate the two
sets. Here the Max, and Min of each population is important.
The Mode may also be useful (e.g., if mode grey value is 0).
Average or Median is useful for judging rough skewness, or
where the biggest "payoff" is. Often knowing the middle 80% of
the distribution (10-90% rule) is of more value than Max/Min,
which may represent outliers.

- Importance of using operations which MAINTAIN important
DISTINCTIONS that exist between accept and reject set, while
filtering out or eliminating other parts of the image.

- Need to consider what criteria/distinctions are affected by a
given operation (i.e., added or eliminated).

- When choosing between alternative solutions, it is important to
compare their relative costs. Costs of operations include:
cost of testing for applicability and searching for the best
parameters, time cost of the operation itself (how long it
takes to execute), and expected cost of solving the
sub-problems which it leaves. For a given expert, familiarity
with operations will also play into the percieved cost-- i.e.,
there is an additional perceived cost of learning to how apply
the operation correctly.

A fairly complete list of the types of criteria which may be
used to distinguish accept edges from reject ones includes the
following:

- Position (absolute/relative)

- Orientation (absolute/relative)

- Distance to something else

- Direction relative to something else

- Adjacency to, Connection to something else

- Continuity (broken vs continuous)

- Topology (closed loops vs open ended vs touching vs
intersecting)
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Crey values (absolute levels)

- Colors (multispectral value clusters)

- Contrast (weak vs strong, as gradient vs as local peak or
trough)

- Size (for lines, both a length dimension and a width dimension)

- Shape (straight vs curved; angles of intersection)

- Texture/Noise

Several alternative general strategies exist within the
general strategy of separating desired from undesired edges. A
partial listing of these strategies includes,

- Go for ALL of one of the sets (usually the smaller in number or
the easier to extract), then eliminate parts of the other which
still remain [SUP strategy].

- Go for ONLY one of the sets (the one which is easier to get a
large subset of, such that NONE of the other remains), then add
the parts which are still missing [INF strategy].

- Go for ONLY [INF] of both sets (accept and reject), follow this
in parallel for both, use a competition tie-breaker to decide
pixels which cannot be put in one or the other. Alternatively,
try a parallel SUP strategy, using a tie-breaker to decide
pixels which fall in both.

- Go for best split (least error) of the two sets, and then
create subproblems to solve how to recover what is still
missing and how to delete what should not be present.

4.3.2 General Approaches For Different Classes Of Lines

The type of lines that exist in images has a la.ge effect on what
strategy to select when developing an algorithm. Among some of the
general strategies to choose from are listed below organized by
line type.

- Pulse Edges. Easier than step for single direction pulses,
when background is generally smooth. Use opening/closing
residue based on maximum pulse width.
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Step or Ramp Edges. Ease depends on width of edge vs
background distortions. If edges are blurred or indistinct on
a background with significant gradients, it may be difficult to
separate the edges out. Use one of many types of edge
generators (Morphological gradient, other gradients, Haralick
operator, Marr operator, Rosenfeld multiresolution, etc.), then
threshold absolutely or at multiple levels in combination with
spatial information.

- Texture Edges. Try to convert to a step edge, then find the
step edge as above. (Ex: Erode to eliminate one texture,
Span/CDilate over to recover other side, dilate or close to
fill in gaps, then find step. Alternatively, find both sides
independently and have them compete for the middle). Skeleton
of background ("Zone of influence") may help to modify the
image in a way that would make it easier to find the texture
boundaries. In general, the most important strategy for
dealing with texture is to find a way to get rid of it.

- Step and Pulse. Trick here is to avoid getting steps on both
sides of the pulse. Suggest a post-processing step which
combines steps which are too close together.

- Uniform Texture and Step. Suppress texture as noise with
complementary spatial filters; then go for step edge.

- Non-Uniform Texture and Step. Same method as above, or use
dual-sided technique discussed under texture if there was a
chance of inadvertently eliminating the step.

- Uniform Texture and Pulse. Skeletonize down, eliminate single
points--long lines will stay. If lines are short, size may not
discriminate, so may we need to distinguish between the shape
differences of the texture vs the lines. For example, to
discriminate thin objects from blobs--erosion gives min width
dimension, skeleton gives max--if we perform both and the
result is about the same, we have a roundish object, otherwise
a more linear one.

- Pulse, Step and Uniform or Non-Uniform Texture. Remove
texture, get steps while trying to avoid destroying pulses,
cleanup afterward or join together things that are too close.
To remove texture, consider shape or size approaches discussed
above.
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4.3.3 Suggested Methods For Specific Edge Types

Several different strategies for working with specific edge types
have been developed over the years. A list of these methods is
included below.

- Long, continuous, straight segments in different orientations.
Use D. McCubbrey method (Union of erosions by shorter segments
in several orientations; accept results of sufficient length)
(Fails for curved or short or broken segments.)

- Generalization of above using correlation (shift-add instead of
shift-and = erosion) can compensate for small breaks. Choose
between these two based on presence of small breaks. (how
small? how many?) Care needs to be taken in closing breaks,
not to connect things which shouldn't be connected.

- Closed Loops (edges of closed figures). Skeletonizing
including end point removal (pruning) will not eliminate such
lines. (Fails if loops are in any way broken). Useful for
separating closed figure edges from other types.

- Short Lines or Lines with Ends. Skeletonizing or thinning
lines which reduces ends can lose them--the sooner the shorter.
(Use non-pruning methods if you need to preserve them).

- Narrow Lines. (Pulse Lines) The.e can be removed by different
filtering operations depending on how narrow they are. If the
accept and reject sets differ in terms of line narrowness, then
this fact can be exploited to select one or the other.

Pulse Lines can be positive or negative in direction. There
are symmetric (dual) operations for pulling out each type.
(Opening, Closing residues). Likewise, noise cor:es in positive
(salt) and negative (pepper) types, and there exist dual
filters for taking out each type.

Noise can play a complicating role for very narrow pulses. The
operations which filter salt or pepper noise based on size will
also wipe out pulse lines of the same directionality if they
are not wider than the noise spots. (There are other
techniques which can be used in this case, which make use of
the fact the lines are extended, while the noise spots are
usually compact).

- Intersecting or Touching Lines. These specific configurations
can be easily found by the Cyto, so if your accept and reject
sets of lines differ with respect to this, you can separate
them by finding these configurations and using conditional
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dilation to recover the whole line. Given that the lines are
intersecting or touching, we can ask about the angles of
intersection (narrow, wide, right angles). This may help to
separate the sets, or it may have a bearing on the choice of
filters and parameters.

- Oriented Lines. (assumes Straight segments) If lines are
curved, the whole question of orientation becomes irrelevant.

For limited numbers of specific orientations, we can design
special structuring elements (take union of openings) or rotate
the image by a specific number of degrees. (For example, for
orthogonal segments not oriented with x/y axes).

For segments oriented with x/y axes, specific linear
structuring elements are already available. (Matched Filter
approaches) These are the cubes and walls (square and linear
cross-sections). If one set of edges is oriented and the other
is not, we can use these elements to separate them.

Non-oriented lines suggest the use of rotationally invariant
elements like circles or disks, or unions of all different
oriented short segments (slower).

- Broken Lines. If noise exists, or if angles of intersecting
lines are narrow, then attempts to fill in broken line gaps may
create spurious lines between noise points, or fill in the
corners of the narrow angles. This requires carefully choosing
parameters based on the size of gaps, and the angle of
intersections.

Under this general strategy there are two contrast issues worth
noting:

- If the edges of interest differ in contrast from those which
are not, we can use this to separate them. (Work with some
form of gradient image). It is best that the desired edges
have the most contrast.

- There is an interplay between the contrast, the width of the
edge or ramp, and the noise, which limits the types of
filtering which can be done.
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4.4 System Design

This project has produced an overall system design for an image

algorithmist aid for edge extraction. Ai overview of the design is
shown in figure 4-5. Five major system components shown in this
figure: the man/machine interface, the inference engine, the
knowledge base, the system goals, and the current image
characteristics.

System design specifications for the man/machine interface
component have been developed in this project. These
specifications were also partially implemented. The remainder will
be implemented in the second phase when the decision aid is
embedded into the image processing workstation. These
specifications include a restricted natural language interface, an
explanation capability, an elaboration facility, a help mechanism,
and a definition lookup capability.

The inference engine component is fully implemented. It is
described in great detail in the inference engine subsection of
this document.

The knowledge base component was partially implemented under
this project. Development of the knowledge base for the
background/noise removal phase of the edge extraction algorithm
sequence is nearly completed. The remaining development of this
component is expected to continue through phase Ii of the program.
The methodology that will be employed will be to individually
develop knowledge structures for the phases of the edge extraction
algorithm sequence outlined in figure 4-6. As illustrated in this
figure, the sequence consists of the following phases.

- BACKGROUND/NOISE REMOVAL PHASE. Use of different kinds of
filters (openings, closings, spike-fil, donutfil, etc.) to
remove noise. If large undesired regions of the background can
be identified, they can also be removed at this point.

- EDGE GENERATION PHASE. Pulses are recovered by opening
residues (positive) or closing residues (negative). Edges are

generated by applying one of myriad possiblities (morphological
gradient, Haralick edge detectors, Gaussian-Laplacian, Sobel,
Roberts, Rosenfeld multiresolution method, etc). All of these
generate grey-level edge images.

- GREY-LEVEL ENHANCEMENT PHASE. All sorts of grey-level
massaging techniques may be used here to improve the output of
the edge generator before the threshold is applied. These
include template matching (erosion by walls) or correlation,
grey level smoothings or skeletons or thickenings. .le
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* BACKGROUND/NOISE REMOVAL PHASE

* EDGE GENERATION PHASE

* GREY-LEVEL ENHANCEMENT PHASE

* THRESHOLD GENERATION PHASE

* BINARY ENHANCEMENT PHASE

* DISCRIMINATION PHASE

* CLEANUP, POST-PROCESSING PHASE

Overview of Edge Extraction

Algorithm Sequence

Figure 4-6
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THRESHOLD GENERATION PHASE. The threshold can be "above" (to
get the edges) or "below" (to get the flat regions). In both
cases, a single simple threshold may be used, or a
multiple-level threshold which starts first with the most
certain regions, and adds increasingly uncertian pixels based
on an additional spatial proximity criterion such as "within
convex hull" or "within d distance" of previous result.

- BINARY ENHANCEMENT PHASE. A multitude of binary massaging
techniques to improve the binary result of the threshold
operation after the fact. These include skeleton or thinning
operations to reduce the size of edges, openings to select
edges which are long or straight or properly oriented, closings
or Hough transforms or other operations which close up small
gaps in broken edges, and so on. If we focus on regions, then
closings which fill in small holes, homo-topic thinnings to
grow out the regions without touching, or smoothings to give
them less ragged edges,etc.

- DISCRIMINATION PHASE. Once we have a decent binary result, we
can now try to discriminate the edges we want from those we
don't, based on distinguishing criteria such as length, width,
orientation, position, topology, shape, etc. In some cases,
some portion of these discriminations may have been made
earlier, in one of the grey-level phases or even in the
thresholding phase.

- CLEANUP, POST-PROCESSING PHASE. If there is anything left to
do such as joining edges which were too close together, or
eliminating edges which were too small, or wiping out spurious
edges or points resulting from the discrimination technique
used, here's the last chance

The systems goals component is defined to be the C3PL commands
augmented by library procedures. Initially these goals will
include only the commands themselves, although future work could be
directed at selecting command parameters.

The current image characterstics component will initially be
provided by the user through system interaction. It is expected,
however, that much of this will be eventually automated through
conventional software procedures, and facilities have been
implemented in the inference engine that allow the input of image
information from such procedures.
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4.5 Knowledge Acquisition Environment

This research has resulted in a fully implemented knowledge
acquisition software system, VisEd. It is described in detail in
the software systems section.

4 6 Inference Engine

This research has resulted in a fully implemented inference engine,
ARC. It is described in detail in the software systems section.

4.7 Prototype Expert System

This research has produced a prototype expert system. This
prototype incorporates knowledge about filtering commands to aid
the user in selecting the appropriate command for processing an
image. This prototype implements much of the first phase of the
edge extraction sequence outlined above. An example of the dialog
produced by this system follows.

(01) Are there undesired bright objects ? NO

(02) The BUMP-FILTER does not look promising

(03) The OPEN-FILTER does not look promising

(04) Are there undesired dark objects ? YES

(05) Are the dark elements you wish to remove
narrow ? ELABORATION

(06) ie. They are generally more narrow than the desired
dark objects in the image.

(07) Are the dark elements you wish to remove narrow ? 3

(08) Are there undesired dark lines in the image ? YES

(09) Are the undesirable dark lines narrow ? YES

(10) Are there isolated dark noise points ? YES

(11) Are there undesirable dark clusters in the

image ? YES

(12) Are the undesirable dark clusters small ? YES
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(13) The CLOSE-FILTER looks promising. Do you want
to try it ? YES

(14) CLOSE-FILTER processing would occur here

(15) Do you require further filtering ?YES

(16) Are there bright isolated noise points in the
image ? NO

(17) The SPIKE-FILTER does not look promising

(18) Are there primarily dark isolated noise

points ? NO

(19) The HOLE-FILTER does not look promising

(20) The DONUT-FILTER does not look promising

(21) Are there undesired compact dark objects in
the image. ? YES

(22) Are the dark compact undesired objects isolated from
other dark regions ? YES

(23) The POTHOLE-FILTER looks promising. Do you want
to try it ? YES

(24) POTHOLE-FILTER processing would occur here

(25) Do you require further filtering ?NO

(26) Reasoning Completed!

Several interesting points can be seen in this example. In line 01
a general but powerful question is asked of the user. The
response, no, immediately indicates that the BUMP-FILTER (02) and
the OPEN-FILTER (03) need no further consideration. The system
then focuses on removing dark objects (04). The positive response
in (04) immediately produces a more focused question (05). In
response to this question the user ask for more elaboration on the
question. The system responds with a more detailed description of
the question (06). The system then restates the question (07), and
the user responds with a three. This response indicates most of
the elements are narrow, but not all. The system then continues
the dialog by asking more questions that are concerned with using
the CLOSE-FILTER (08)-(12). From the answers to these questions it
concludes that the filter looks promising, and asks the user if he
wants to try it (13). The user reponds positively, and the system
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attaches a procedure to do the processing (14). (At present the

only action produced by this procedure is to print (14), but in

future versions actual processing will occur at this stage.) After

the processing is is completed, the system asks the user if

additional goal investigation is necessary (15). The user responds

positively, and the system continues to investigate filters. No

bright noise in the image (16) eliminates the SPIKE-FILTER from

further consideration (17). No dark isolated noise points (18)

eliminates the HOLE-FILTER (19) and the DONUT-FILTER (20) as

possible filters. Positive undesired (21), isolated (22), dark

compact objects make the POTHOLE-FILTER look promising (23), and it

is processed (24). No further filtering is required (25), and the

reasoning is completed (26).

5 CONCLUSION

This project was very successful. Several positive outcomes have
been been produced through this research including a working
prototype expert system that aids its user in selecting an

appropriate image processing filtering operation. All of the
project goals were obtained. In fact expectations for this project

were greatly exceeded.
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